The emerging techniques in the fields of physics, chemistry, materials and computer science bear an enormous potential for the investigation of wood materials. Their appropriate application will boost the state-of-the-art in wood mechanics. Highly sophisticated imaging techniques in combination with increasing computer processing power and memory capacities allow studying materials at always smaller length scales. This COST Action aims at exploiting the emerging experimental and computational techniques for improving the knowledge of microstructural features of wood and their relevance for the macroscopic material behaviour. Particular attention will be paid to the effects of moisture, load, temperature, and time on the mechanical behaviour. The increased knowledge of the hygro-thermo-mechanical behaviour of wood will result in a better predictability of the material properties and their changes over time and, thus, enhance the reliability of the material. Together with the improved characterisation techniques, the better knowledge base will create new possibilities for the development and engineering design of innovative wood-based products in the future, starting off at the scale of the wood cell wall or its constituents. Stimulating the use of wood as a renewable and CO2 neutral raw material will contribute to a sustainable development in Europe.
Keywords: wood and wood products, ultrastructure, (hygro-)mechanical properties, modelling, sustainability
wood and wood products - ultrastructure - (hygro-)mechanical properties - modelling - sustainability