The significant increase in the number of IoT devices has also brought with it various security concerns. The ability of these devices to collect a lot of data, including personal information, is one of the important reasons for these concerns. The integration of machine learning into systems that can detect security vulnerabilities has been presented as an effective solution in the face of these concerns. In this review, it is aimed to examine the machine learning algorithms used in the current studies in the literature for IoT network security. Based on the authors’ previous research in physical layer security, this research also aims to investigate the intersecting lines between upper layers of security and physical layer security. To achieve this, the current state of the area is presented. Then, relevant studies are examined to identify the key challenges and research directions as an initial overview within the authors’ ongoing project.