

CA19110 06/10/2020 - 05/10/2024 Plasma applications for smart and sustainable agriculture

Key objectives:

- (1) developing procedures for efficient **decontamination of wastewater** of agricultural origin and for the **treatment of growth media (solid/liquid)** and manure;
- (2) creating protocols for **productions of PAW (Plasma Activated Water)** defined by the type of application of PAW.

Work group 4 leaders:

Zdenko Machala (Comenius University, Bratislava, Slovakia) machala@fmph.uniba.sk

Wolfgang Gernjak (ICRA, Girona, Spain) wgernjak@icra.cat

Work group tasks:

T4.1. Wastewater treatments and decontamination of water by atmospheric pressure LTPs:

- Water treatment processes based on non-thermal plasma combined with classical treatments (e.g. biological) for purification of wastewater contaminated with pollutants from agricultural practices or animal farms (pesticides, antibiotics, bacteria etc.).
- PAW: characterization of chemical and physical properties.
- Toxicity and ecotoxicity tests of the stable products remaining after plasma treatment.
- Developed procedures for plasma treatments compared to classical water treatment practices. If successful, classical (incl. AOT) procedures will be complemented by plasma treatments.

T4.2. Plasma treatment of water for creation of PAW:

- Atmospheric pressure LTPs for treatment of unpolluted water \rightarrow PAW;
- Optimization procedures for treatments of water;
- Detailed chemical and physical characterization of PAW (HPLC, LC-MS, UV-Vis, etc.) with a special care given to the tests of a possible toxicity of PAW;
- Ageing effect of the PAW. Procedures for storing PAW will be determined and recommended for end users;
- This task will be performed in close relation to the tasks T2.1, T2.3. and T3.1.

CA19110 06/10/2020 - 05/10/2024 Plasma applications for smart and sustainable agriculture

Work Plasma treatment of agricultural wastewater, growth media, manure and production of plasma activated water group 4 (PAW)

Work group tasks:

T4.3. Plasma assisted treatment of the plant growth media (soil, water) and manure/organic waste:

- LTP treatment of the plant growth media and manure for the fertilization purposes;
- Chemical and physical characteristics with the emphasis on bactericidal and fungicidal characteristics of the treated growth media;
- Possible toxic effects.

T4.4. Modelling and development of plasma systems for treatments of growth media:

- Characterization of plasma systems specific for wastewater treatment, growth media treatment and production of PAW: detailed diagnostics and modelling;
- Where possible, well characterized laboratory systems showing the best potential in applications will be turned into prototypes ready to be used by end users.

CA1911006/10/2020 - 05/10/2024Plasma applications for smart and sustainable agriculture

Work	Plasma treatment of agricultural wastewater, growth media, manure and production of plasma activated water
group 4	(PAW)

1st Work Group 4 online meeting (18-19 January 2021) Mapping of R&D activities, expectations of workgroup contributors and alignment towards common objectives

https://teams.microsoft.com/l/team/19%3ae5ce612bd59048a29408b6dfeb4e5538%40thread.tacv2/conversations?groupId=92f2e3ff-57b6-46bc-bf6a-021143cdc7c6&tenantId=ce31478d-6e7a-4ce7-8670-a5b9d51884f9

Mon 18 January 2021

13:30-14:00	Session 1: Introduction		
	Nevena Puač	Institute of Physics,	Introduction to PIAGRI COST Action
		University of Belgrade,	
		Serbia	
	Zdenko Machala	Comenius University	Introduction to Work group 4
		Bratislava, Slovakia	
	Wolfgang Gernjak	Catalan Institute for Water	Introduction to meeting schedule and objectives
		Research, Girona, Spain	

14:00-14:45	Session 2: Expectations towards the technology and how WG4 should contribute and facilitate this progress		
	Wolfgang Gernjak	Catalan Institute for Water	Facilitated interactive session - expectations from WG4
	(moderator)	Research, Girona, Spain	

14:45-15:00 Coffee break

15:00-17:30	Session 3: Mapping of R&D activities - participant flash presentations		
	(Block I - Plasma-water chemistry)		
15:00-15:15	Jan Benedikt	Kiel University, Germany	Plasma-generated O atoms transport into and reactivity
			with aqueous solutions
15:00-15:15	Zdenko Machala	Comenius University	Plasma-water interactions – chemistry and transport of
		Bratislava, Slovakia	reactive species
15:30-15:45	Kinga Kutasi	Wigner Research Centre for	Controlling the PAW composition by Fenton-type of
		Physics, Budapest, Hungary	ions
15:45-16:00	Yury Gorbanev	University of Antwerp,	Plasma-liquid interaction: how big is the role of liquid?
		Belgium	

16:00-16:15 Coffee break

(Block II - Emerging water contaminants)			
16:15-16:30	Chedly Tizaoui	Swansea University, United	Non-thermal plasma for the removal of emerging
		Kingdom	contaminants in water
16:30-16:45	Bratislav Obradović	University of Belgrade,	Plasma treatment of water polluted by herbicides
		Serbia	
16:45-17:00	Ester Marotta	University of Padova, Italy	Plasma remediation of PFAS contaminated water for
			use in irrigation
17:00-17:15	Arijana Filipić	National Institute of	Inactivation of viruses in water
		Biology, Ljubljana, Slovenia	
17:15-17:30	Monica Magureanu	National Inst. for Lasers,	Brief history of the research on plasma treatment of
		Plasma and Rad. Physics,	water in NILPRP
		Bucharest, Romania	

Tue 19 January	2021
-----------------------	------

9:00-11:00	Session 4: Mapping of R&D activities - participant flash presentations		
	(Block III - Agriculture / water treatment / PAW)		
9:00-9:15	Fernando Alba-Elías,	University of La Rioja,	PAW generation and applications: our research
	Yolanda Saenz	Center for Biomedical	approach
		Research of La Rioja, Spain	
9:15-9:30	Romolo Laurita	Università di Bologna, Italy	Plasma processes for PAW production under
	,		development at the University of Bologna
9:30-9:45	Petr Lukeš	Institute of Plasma Physics,	Research activities of IPP in the plasma treatment of
		Prague, Czechia	water for applications in agriculture
9:45-10:00	David Duday	Luxembourg Institute of	Nanoparticles, plasma jets and mass spectrometry to
		Science and Technology	improve the treatment of liquids
10:00-10:15	Wolfgang Gernjak	Catalan Institute for Water	Research activities in advanced oxidation technologies
		Research, Girona, Spain	at ICRA
Č.			

10:15-10:30 Coffee break

(Block IV - Technology development)			
10:30-10:45	George Kokkoris	NCSR Demokritos, Athens,	Atmospheric pressure plasma jets: A lab-scale unit for
		Greece	PAW and fast computations of reactive species'
			densities in jets
10:45-11:00	Jan Čech	Masaryk University, Brno,	CaviPlasma – the new tool for energy-efficient large-
		Czechia	scale PAW production
11:00-11:15	František Krčma	Technical University, Brno,	Pin-hole based systems for generation of plasmas in
		Czechia	liquids
11:15-11:30	Nikola Skoro	Institute of Physics,	Treatment of nure and contaminated water by
		University of Belgrade,	atmospheric proscure plasma
		Serbia	atmospheric pressure plasma
11:30-11:45	Luís Redondo	EnergyPulse Systems,	Solid-state pulse generators for ozone production
		Lisboa, Portugal	

11:45-12:00 Coffee break

12:00-13:00	Session 5: Discussion on goals of WG4		
12:00-12:10	Zdenko Machala	Comenius University	Wrap-up of day 1+2
		Bratislava, Slovakia	
12:10-12:55	Wolfgang Gernjak	Catalan Institute for Water	Faciliated discussion
		Research, Girona, Spain	
12:55-13:00	Zdenko Machala	Comenius University	Preliminary conclusions and next steps
		Bratislava, Slovakia	

At 18/01/2021 15:30 CET

112 participants online!

Knowledge gaps – Water decontamination

Priority 1:

Toxicity and by-products Scalability potential

Priority 2:

Understanding chemical interactions with contaminants and water matrix Energy efficiency and standardized assessment

Others:

Difference in plasma sources Reactive species characterization Plasma characterization Integration with other water treatment technologies Kinetics, effect of concentration

Knowledge gaps – Plasma activated water generation

Priority 1:

Composition of PAW Is it more economic than off-the-shelf chemicals Relate plasma ("gas") with PAW (liquid) properties Scalability potential Shelf-life

Priority 2:

Differences among power supplies Standardized controls and reproducibility

Others:

What about PAW generation with high concentration of organics present?

Knowledge gaps – plasma assisted treatment of growth media

Priority 1:

Mechanism of action Interaction with organic substances

Priority 2:

Scalability potential Influence on soil microbioma Transport in porous media, where does it "react"?

Technology barriers – water decontamination

Priority 1:

Energy consumption Scalability Economics

Priority 2:

Comparison with other technologies Integration with other technologies Acidity generated Influence of plasma source Manufacturing of plasma sources

Technology barriers – PAW generation

Priority 1:

Scalability Economics

Priority 2:

Reproducibility, quality control

Technology barriers – Growth media

Priority 1:

Scalability Site-specifics, soil characteristics

Priority 2:

Definition of applications (greenhouse?) Economics

Regulatory and environmental compliance issues

Priority 1:

Toxicity, by-products (or even PAW ingredients) Food legislation

Priority 2:

REACH Biocide directive Safety

Increase participation from:

Priority 1:

Biotech Agronomists

Priority 2:

Industry and end-user European Food Safety Authority Microbiology (microbial communities) Electrical engineers Environmental engineers RD offices of governments / agronomy ministries Regulators and policy makers Nanocharacterization

52 respondents listed 8 companies

WorkPlasma treatment of agricultural wastewater, growth media, manure and production of plasma activated watergroup 4(PAW)

Tools

Q1: Knowledge generation, STM
Q2: Knowledge review and unification
Q3: Joint applications for R&D funding
Q4: Dissemination to the general public
7.79
Q5: Building the "plasma marketplace"
8.42

Gaps & Needs

- Scalability
- Benchmarking efficiency and cost
- Toxicity & by-products
- Interaction with organic substances
- Composition of PAW, Relate plasma ("gas") with PAW (liquid) properties
- PAW shelf-life
- Legislative voids
- Network extension
- Company and innovation canvas

CA19110 06/10/2020 - 05/10/2024 Plasma applications for smart and sustainable agriculture

WorkPlasma treatment of agricultural wastewater, growth media, manure and production of plasma activated water
group 4(PAW)

1st PlAgri Training School, 17-19 March 2021, Jahorina, Bosnia - Lectures related to WG4:

- David Graves: General talk about RONS
- Petr Lukes: Gas-liquid interface chemistry; Water chemistry, plasma-activated water characteristics
- Frantisek Krcma: Overview of plasma sources used with or in liquids; main characteristics, geometries...(little bit of general stuff); results in the field
- Wolfgang Gernjak: The role of chemically or physically induced redox processes in wastewater treatment
- Ester Marotta: Chemistry angle/reactions/relevant species/pathways focused on LC-MS diagnostics

CA19110 | 06/10/2020 - 05/10/2024 Plasma applications for smart and sustainable agriculture

1st Workshop of the COST Action – Plasma applications for smart and sustainable agriculture,
2-3 September 2021, Magurele, Bucharest

WorkPlasma treatment of agricultural wastewater, growth media, manure and production of plasma activated watergroup 4(PAW)

1st Workshop of the COST Action – Plasma applications for smart and sustainable agriculture, 2-3 September 2021, Magurele, Bucharest - Lectures related to WG4:

- Z. Machala Reactive oxygen and nitrogen species in plasma activated water: tuning their concentrations and functions in plant growth promotion
- E. Marotta Plasma-based water treatment in agricultural applications
- F. Bilea Removal of mixtures of pharmaceutical pollutants in aqueous solutions using nonthermal plasma
- P. Brault Energy decomposition analysis of organic pollutants in water
- A.V. Nastuta Tailoring plasma sources towards plasma agriculture: at the interface with liquids and solids
- A. Bertaccini Plasma activated water as disease resistance inducer in plants

Running COST STS missions related to WG4 (Oct 2020-Oct 2021):

- Gervais Blondel Ndiffo Yemeli, Comenius University (Bratislava, Slovakia), to National Institute for Laser, Plasma and Radiation Physics, Magurele, Romania, 18.7. - 16.10., Investigations of the effects of wastewater treated by non-thermal plasma on early seed germination and plant seedlings growth
- Ludmila Čechová, Brno University of Technology (Brno, Czech Republic), to University of Padova, Italy, 19.9 - 17.10., The influence of plasma and plasma activated water on cultivation media
- Bianca Tatarcan, Alexandru Ioan Cuza University of Iasi (Iasi, Romania) to Comenius University Bratislava, Slovakia, 3–17 October 2021 – Assessment of long lived RONS in liquids after exposure to helium and air atmospheric pressure plasmas

WG4 Deliverables according to MOU:

Month 10: LTPs in treatment of wastewater, growth media and PAW production

(Applications of atmospheric pressure plasma sources in treatment of wastewater, growth media and PAW production)

Month 30: Characterisation and optimisation of LTP applications: production of PAW, wastewater, growth media

(Internal report on the characteristics of the most efficient plasma sources, optimisation-modelling and diagnostics; Toxicity tests of treated media used for application with plants or re-usage for irrigation)

Month 46: Development of laboratory prototypes – water and growth media

(Development of prototypes of most efficient plasma systems for decontaminating of water, production of PAW and treatment of growth media; Guideline for scaling up of the systems)

Future plan:

- Common review article(s) on LTPs in treatment of wastewater, growth media and PAW production 2nd year to make more mutual benefit of the COST WG4 report (M10 deliverable)
- Similar to P J Bruggeman, M J Kushner, B R Locke, et al. : Plasma–liquid interactions: a review and roadmap, Plasma Sources Sci. Technol. 25 (2016) 053002 (59pp), highly cited in WoS (result of COST TD1208 (2013-17)
- Face-to-face 2nd Workshop of the COST Action (Slovakia, Sep 2022, associated with 9th Central European Symposium on Plasma Chemistry)
- Common project proposals (Horizon EU etc.)